A Measurement Study of BGP Misconfiguration

Ratul Mahajan, <u>David Wetherall</u>, and Tom Anderson

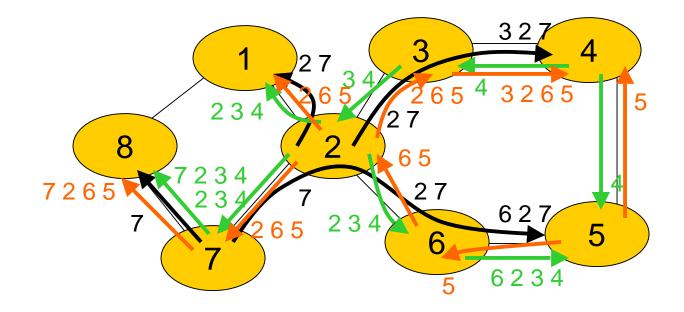
University of Washington

Motivation

- Routing protocols are robust against failures
 - Meaning "fail-stop" link and node failures
- But what about when nodes just don't behave?
 - Misconfigurations, implementation bugs, malicious attacks
- We need to understand this to make availability guarantees
 Many colorful anecdotes, few systematic studies
- BGP is rich ground for a study of misconfigurations
 - Thousands of ISPs, many implementations, complex to configure

This talk

- Peek at an in-progress BGP measurement study based on the RouteViews server
 - Public 2 hourly routing table snapshots from ~50 different ISPs
- Our goals:
 - Identify the common types of misconfigurations
 - Determine how frequently they occur
 - Assess their impact on the Internet as a whole
- Current focus is the analysis of origin changes (hijacks) and partial connectivity


Methodology

- Define a model of acceptable BGP usage
 - Deviations from the model are "misconfigurations"
- Measure the occurrence of misconfigurations
 - Use heuristics to attribute to the likely causes
- Measure the impact of misconfigurations
 - On other, well-defined, quantities of interest
- Validate against actual ISP experiences
 - Via an email survey

BGP in a nutshell

- BGP is the routing protocol used in the Internet core, which is a graph of Autonomous Systems (ASes) or ISPs
- Each AS announces paths to other ASes that it can use to reach given prefixes (block of IP addresses)
- Announcements are aggregated where possible, e.g, one for many customers, rather than one per customer
- Imagine paths growing from origins subject to policies (transit versus peering); packets follow reverse direction

BGP in a nutshell (2)

- 2 provides <u>transit</u> for 7; 7 reaches and is reached via 2
- 4 and 5 peer; they exchange their customer traffic

Why we need a usage model

- BGP is defined by local operational practices, not global standards
- A contrived example: botched pre-pending
- Pre-pending by an AS is a hack used to make paths less attractive to others. Not considered to be a loop.

− e.g., AS1 AS77 AS4 → AS1 AS77 AS77 AS77 AS4

- What if AS77 announces AS1 AS77 AS66 AS77 AS4?
- Is this a mistake, or a hack for enforcing policy?

A model of BGP usage

- Private identifiers are not be leaked in public
- The origin AS owns the address space it announces
- The advertised AS path matches the forwarding path
- Announcements are aggregated where possible
- AS paths obey policy constraints
- Providers are connected to the entire Internet
- Deviations are defined to be "misconfigurations"

Impacts of misconfiguration

- Alteration of selected paths
 - Not what you preferred
- Increased routing load
 - More routing announcements to process
- Loss of connectivity
 - No paths at some/all locations that reach a prefix
- The last is most serious and visible to users
- The two deviations we focus on can affect connectivity

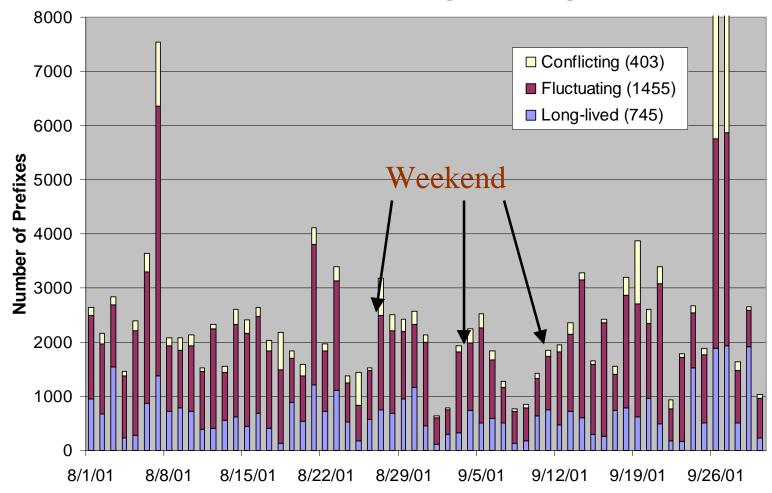
Measuring routes with incorrect origins

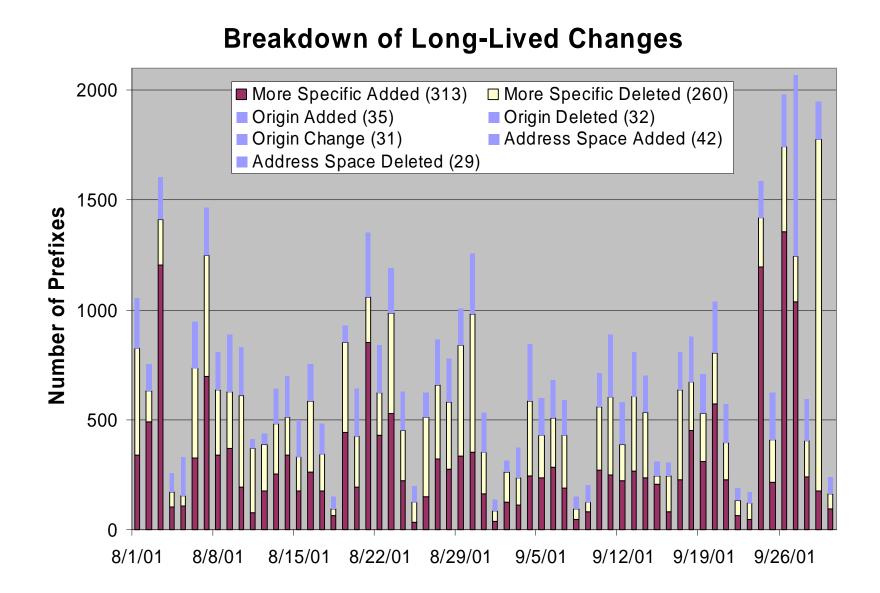
- Are there easy ways to detect misconfigured origins?
 - Multiple origins for a prefix; increasingly common practice
 - Internet Routing Registries (IRRs); found to be inaccurate
- We observe that origins tend to change on human timescales, except for failures and misconfigurations
 - We analyze changes in the RouteViews BGP snapshots
 - We divide them by duration (short vs. long-lived)
 - Then we attribute probable causes to changes
 - Finally we assess their impact on reachability

IRRs: do they detect incorrect origins?

	Total Prefixes	Registered Origins	Consistent Origin(s)	Inconsistent Origin (s)
Single Origin AS	115228	101952	70458 (69%)	31494 (31%)
Multiple Origin AS's	1720	1523	293 (19%)	1230 (81%)

Causes of origin changes

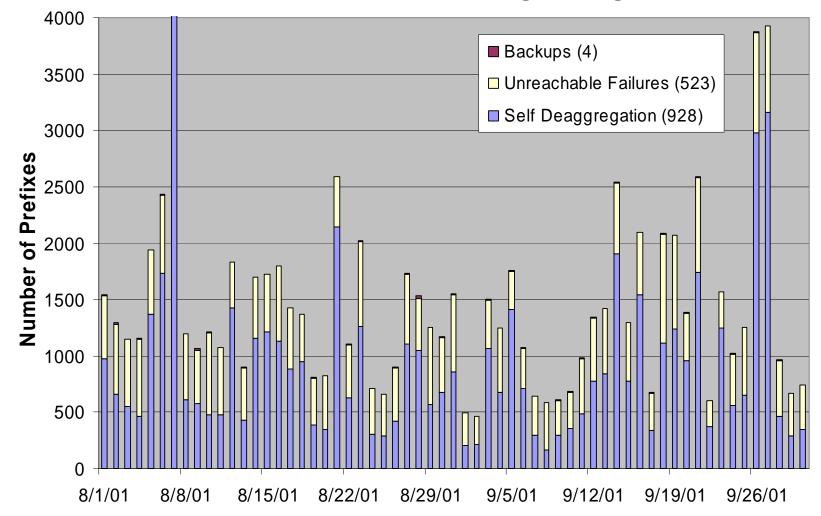

Long-lived	Fluctuating	Conflicting	
More Specific Added	Self Deaggregation	AS-Path Stripping	
More Specific Deleted	Failures (unreachable)	Strip Deaggregation	
Origin Added	Backups	Extra Last Hop	
Origin Deleted		Foreign Deaggregation	
Origin Changed		Other	
New Address Space			
Address Space Deleted			

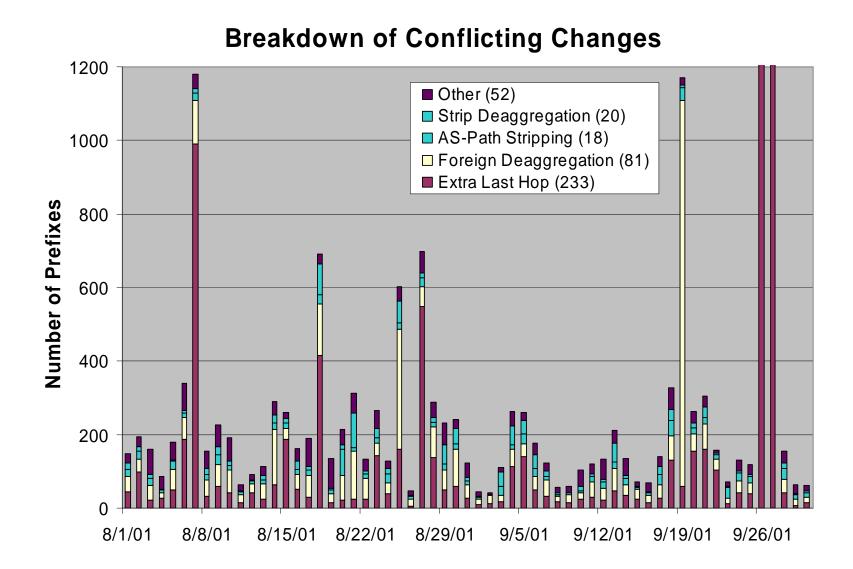

• Long-lived changes last more than one day

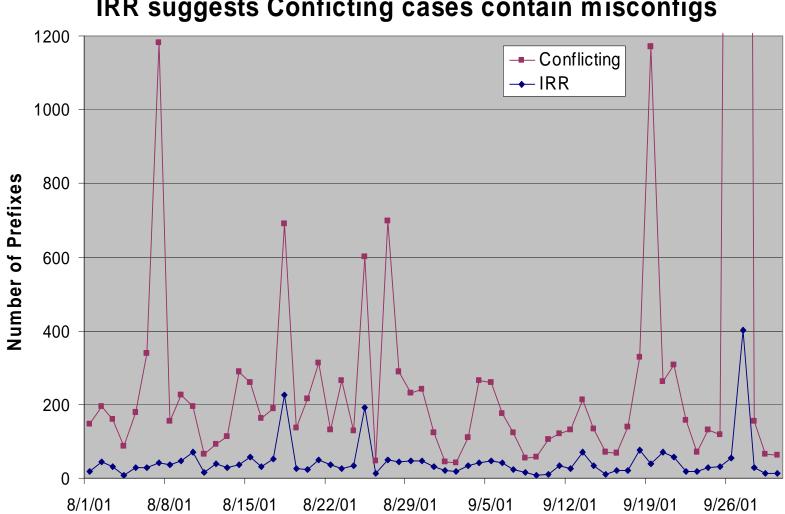
Definitions of short-lived changes

	Stable		Short-lived	
	Announcements		Announcements	
Self Deaggregation	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y'-Z X'-Y'-Z
	1		I	
AS-Path Stripping	a.b.c.d/s	X-Y-Z	a.b.c.d/s	X'-Y
Strip Deaggregation	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y X'-Y
Extra Last Hop	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y'-Z-O X'-Y'-Z-O
Foreign Deaggregation	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y'-O X'-Y'-O

Distribution of Origin Changes






djw // UW-CSE

15

Breakdown of Fluctuating Changes

Validation via an email survey

•Interesting exercise in its own right ...

•30% of emails bounce outright

• More find their way to /dev/null

-"Your support request has been accepted by our team, a case has been opened with reference 12345 $\dots "$

• Surprise and lack of a clue

-"Thanks for alerting us ... I am a bit surprised ..."

-"Ratul, ... can you help us?", "No idea really ..."

-"I believe research has shown routes appear and disappear every day"

• Defensiveness

-"Yes, we leaked ... but took pre-emptive action right away ..."

-"The information you are requesting is covered by NDA ...'

•Hard information and encouragement

-"You caught us. This is what happened ..."

-"I enjoyed your NANOG talk ..."

Validation results

Cause	Total	Replies	Misconfig	Connect?	False +ve
extra-last-hop	111	38	31 (82%)	7 (18%)	7 (18%)
as-path-strip	760	730	723 (99%)	2 (0%)	7 (1%)
self-deagg	1222	243	180 (73%)	42 (17%)	63 (26%)
other	91	36	24 (67%)	12 (33%)	12 (33%)
strip-deagg	150	85	82 (96%)	5 (6%)	3 (4%)
foreign-deagg	188	45	41 (91%)	18 (40%)	4 (10%)
all	2522	1177	1081 (92%)	86 (7%)	96 (8%)

• Caveat: these stats are for prefixes, not incidents.

Causes of origin changes

Real misconfigurations:

False positives:

- Buggy ACLs/route-maps
- Relying on upstream
- Forgot auto-summary
- Redistribution
- Over-aggregating
- Hijacking
- Old routers ...

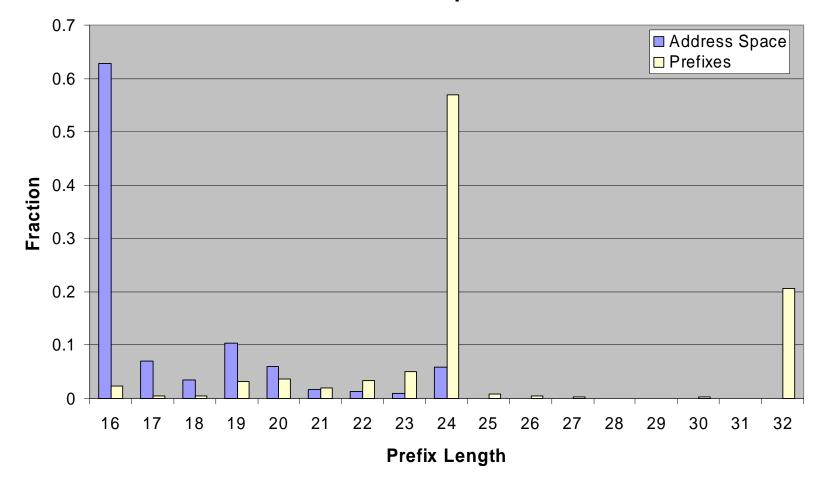
- Just testing
- Failures
- Temp. load balancing
- Migration
- Re-numbering

Speculation

- Complexity of configuration is a root cause of error
 - Scope for greater "type-checking"
- Operational practices are diverse
 - Makes systematic identification of errors difficult
- Authoritative databases will be inaccurate
 - Use for automatic blocks is problematic
- ISPs depend on one another to a significant degree
 - "I thought you'd handle that"
- Connectivity can persist despite many misconfigs
 - Route leaks, redistribution, de-aggregation, ...

Also: Measuring partial connectivity

- Advertised address space is not reachable from all places in the Internet!
- Causes:
 - Convergence delays
 - route flap damping
 - policy (filtering on prefix length, or commercial relationships)
- Failures do not lead to partial connectivity
- We can distinguish the above causes by timescale


Partial connectivity analysis

- Identify partially connected address space (!= prefix) from the BGP table
- Consult BGP snapshots 15 minutes before and after to identify partial connectivity due to convergence delays
- Correlate against partial connectivity across days to differentiate between route flap damping and filtering based partial connectivity
- Verify using public looking glasses to guard against restrictive export policies and default pointing

Partial connectivity: results

- Express as percentage of advertised address space.
- Convergence: 0.005-0.02%
- Route flap damping: 0.1-0.8%
- Filtering: 0.7%

Prefix Length Distribution of Partially Connected Address Space

Tentative conclusions

- There is considerable churn in prefix origins
 - More than 2% of the prefixes are affected every day
 - 1/3 to 1/2 of this churn is due to misconfigurations
- The causes of misconfigurations are diverse
- Connectivity is surprisingly robust
 - ~ 3 in 4 incidents do not cause reachability to be lost
- The address space is not fully connected
 - ~1% persistently partially connected at any time
- Many thanks to the ISP community for its support
- Feedback: <u>http://www.cs.washington.edu/homes/ratul/bgp/</u>