BGP: A Surprisingly Robust Distributed System

<u>David Wetherall</u>, Ratul Mahajan, and Tom Anderson University of Washington.

Dogma: Good Protocols are Robust

- They tolerate failures well
 - e.g., routing protocols and link/node failures
- They follow design principles
 - e.g., soft-state with refresh

Reality: Most Protocols are Fragile

- Against insider faults
 - Implementation bug, configuration mistake, malicious attack
 - e.g., any ISP can hijack your IP connectivity
- There is a lack of design principles
 - Crypto (authentication), Byzantine consensus not a magic bullet

Our Research Agenda

- Study BGP (Internet routing) measurements to quantify screwups ← this WIP
- Design better routing protocols
- Conquer the world

BGP: What (We Believe) We Found

- Many suspicious route announcements
 - Temporary de-aggregation (flood of routes instead of a trickle)
 - Globally visible typos, e.g, 701 **710** 701 445 3
 - Private ASNs/addresses (that should not be globally visible)
 - False origins, e.g, ISP A advertises routes from ISP B as its own
 - Customers leaking provider routes (inadvertent transit)
- It's a mess out there:
 - Screwups add significant routing load
 - Screwups change forwarding paths

Yet BGP is Surprisingly Robust

- Despite screwups there is little loss of connectivity
 With a few exceptions (actual hijacks)
- Plus, BGP contains a "defense" that mitigates the effects of serious screwups that do occur
 - Route flap damping suppresses regions of instability
- Conclusions?
 - Focus on containing the impact of faults
 - Prevention and detection isn't enough