A Study of BGP Origin AS Changes and Partial Connectivity

Ratul Mahajan[†] David Wetherall^{†‡} Tom Anderson^{‡†}

University of Washington [‡]Asta Networks

Goals

- Long-Term: What is the extent and impact of configuration errors in BGP?
 - incorrect origin AS, partial connectivity, pvt. ASN, pvt. address space, looping AS-paths,
- This talk:
 - > Origin AS Changes
 - > Partial Connectivity

Origin AS Changes

- Why does the origin for a prefix change?
 > How many changes are short-lived?
 > How many changes are a result of misconfiguration?
 > How many changes lead to reachability problems?
 Easy ways to detect misconfigured origins?
 - > Multiple origins for a prefix
 - misses subset space hijack
 - increasingly common practice
 - ≻ IRR's
 - are they accurate?

IRR: Simple Way to Detect Incorrect Origins?

BGP Table Snapshot: Sep 28, 2001

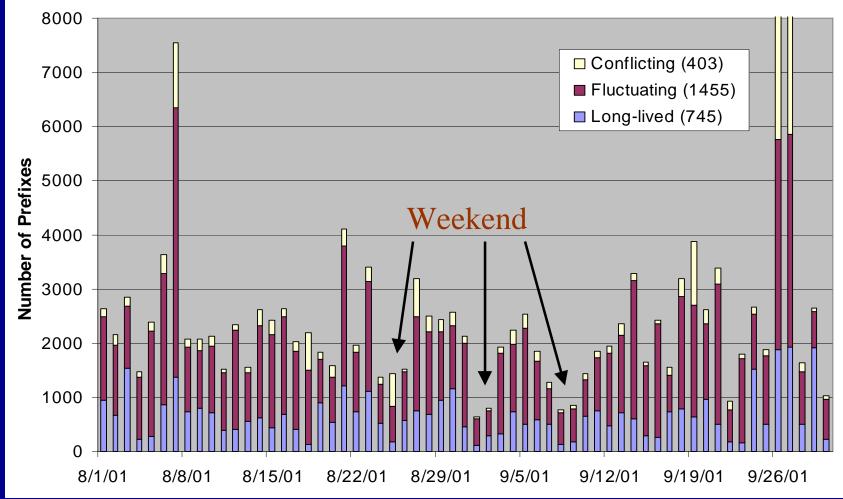
	Total Prefixes	Registered Origins	Consistent Origin(s)	Inconsistent Origin (s)
Single Origin AS	115228	101952	70458 (69%)	31494 (31%)
Multiple Origin AS's	1720	1523	293 (19%)	1230 (81%)

Verified using RADB, RIPE, APNIC, ARIN

Origin Changes: Methodology

- Use BGP snapshots archived by Route Views
 caveat: would miss origin changes that come and go between snapshots
- Identify prefixes that are not announced by the same origin(s) throughout the day
 > includes prefixes not present in all snapshots
- Attribute a cause to every origin change

Classification of Origin Changes

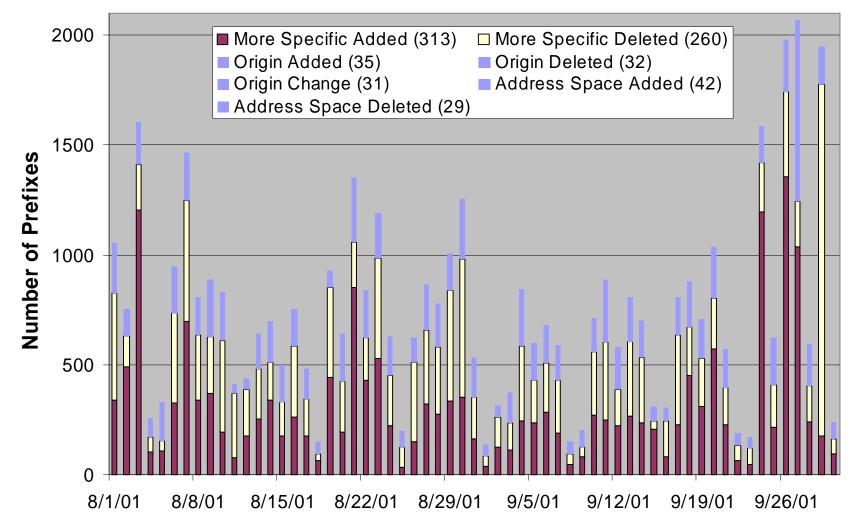

Long-lived: Changes that seem permanent *Fluctuating:* Short-lived changes with correct origins *Conflicting:* Short-lived changes with potentially incorrect origins

Long-lived	Fluctuating	Conflicting		
More Specific Added	Self Deaggregation	AS-Path Stripping		
More Specific Deleted	Failures (unreachable)	Strip Deaggregation		
Origin Added	Backups	Extra Last Hop		
Origin Deleted		Foreign Deaggregation		
Origin Changed		Other		
New Address Space				
Address Space Deleted				

Glossary for Short-Lived Changes

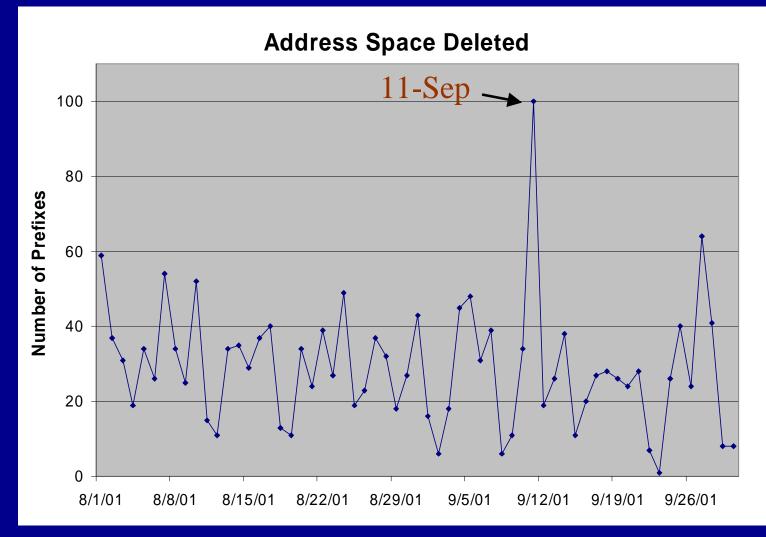
	Stable Announcements		Short-lived Announcements	
Self Deaggregation	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y'-Z X'-Y'-Z
AS-Path Stripping	a.b.c.d/s	X-Y-Z	a.b.c.d/s	Х'-Ү
Strip Deaggregation	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y X'-Y
Extra Last Hop	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y'-Z-O X'-Y'-Z-O
Foreign Deaggregation	a.b.0.0/16	X-Y-Z	a.b.c1.0/24 a.b.c2.0/24	X'-Y'-O X'-Y'-O

Distribution of Origin Changes

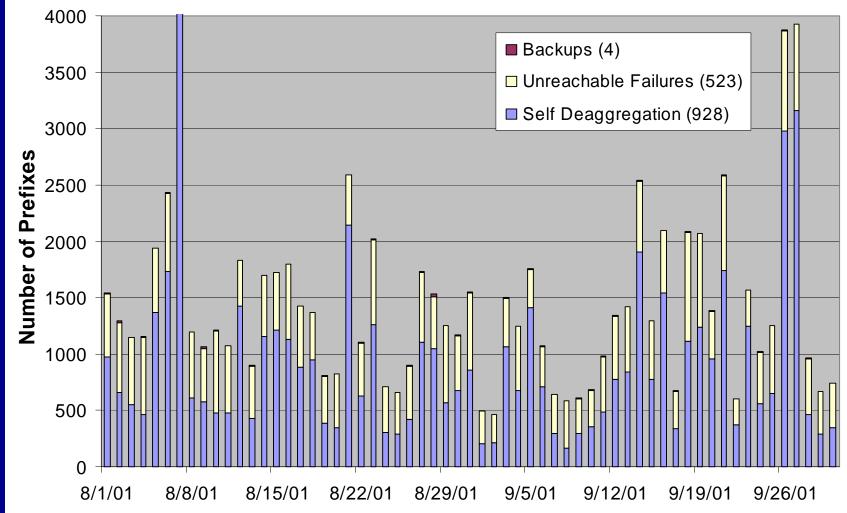


1. More than 2% of the prefixes experience a change

2. Less than a third of changes are long-lived

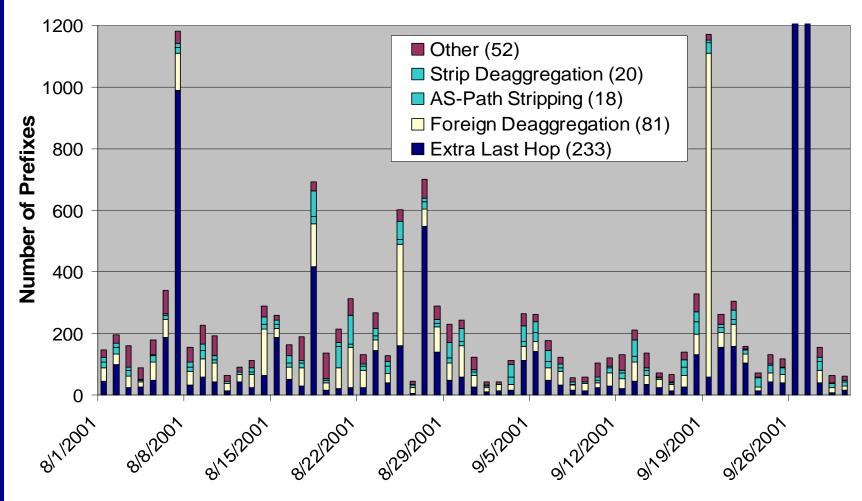

3. Weekly pattern in the number of changes seen

Breakdown of Long-Lived Changes

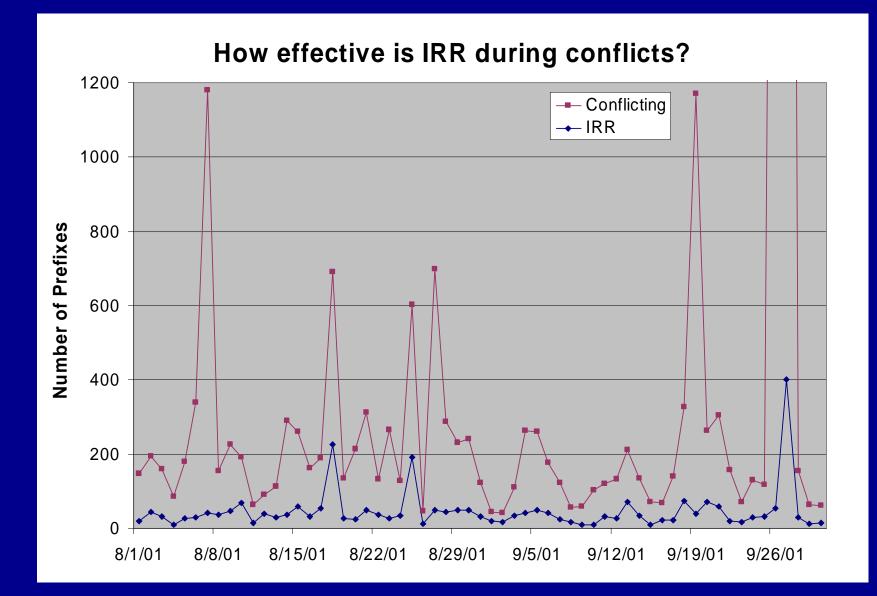


85% of long-lived changes persist beyond a week
 Most action is in more-specifics (added,deleted)

9/11, As Seen by Origin Changes



Breakdown of Fluctuating Changes



Self Deaggregation causes more origin changes than failures

Breakdown of Conflicting Changes

Deaggregation in general, and extra last hop in particular, causes most changes

Consulting the IRR when you see conflicts does not help

Some Examples of Misconfigurations

- Small AS's announce /8's (61.0/8, 62.0/8, ...)
- An AS in Romania originated routes for most of Romania but NO reachability problems
- AS's accept their own deaggregated address space adverts, and pass them on

Not all origin misconfigurations cause reachability problems. How to figure out which ones do?

Reachability Test

Download the current BGP table
 Identify the announcements with new origins
 Divide the AS's into two sets

 loyals: AS's that believe the old origin
 converts: AS's that believe the new origin

 Use public looking glass servers to check if one set can reach the prefix while the other cannot

Reachability Test: Possible Results

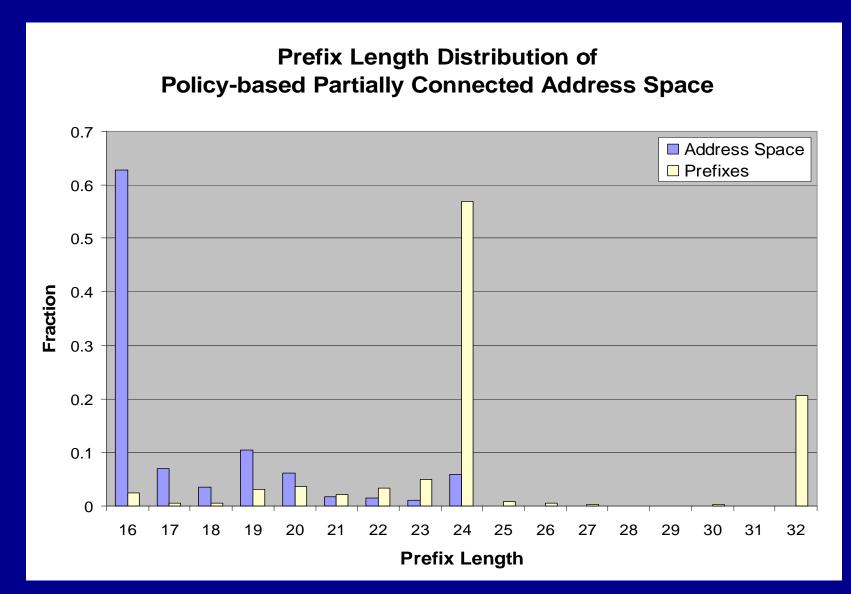
- Pass
 - ▹ both sets can reach the prefix, or
 - ➢ both get blocked at the same place in the network
- Inconclusive
 - both sets cannot reach the prefix, and get blocked at different places in the network
- Fail

one set can reach the prefix, while the other cannot
loyals win or converts win

Reachability Test: Initial Results

	Total	Pass	Inconclusive	Fail: Loyals Win		Fail: Converts Win
Long-lived	837	755	52	18	(2.1%)	12
Fluctuating	117	103	8	3	(2.5%)	3
Conflicting (except Other)	206	186	15	3	(1.4%)	2
Other	91	69	11	11 ((12.0%)	0

Partial Connectivity


- Advertised address space not reachable from all places in the Internet
- Causes:
 - convergence delays
 - ➤ route flap damping and failures
 - ➤ policy
 - filtering (prefix length, commercial relationships)
- Failures should not lead to partial connectivity by themselves

Partial Connectivity: Methodology

- Identify partially connected address space (!= prefix) from the BGP table
- Consult snapshots 15 minutes before and after to identify partial connectivity due to convergence delays
- Correlate across days to identify policy based partial connectivity
- Verify using public looking glasses to guard against restrictive export policies and default pointing

Partial Connectivity: Results

- Expressed as % of advertised address space:
 > convergence: 0.005-0.02%
 > flap damping and failures: 0.1-0.8%
 - ➤ policy: 0.7%

Most partially connected prefixes are /24's Most partially connected address space is due to /16's

Conclusions

- More than 2% of the prefixes experience an origin change during the day
- Less than a third of the changes are long-lived
- Only a small fraction of the changes lead to reachability problems
- 0.7% of address space is partially connected due to filtering policies

Feedback:

http://www.cs.washington.edu/homes/ratul/bgp/ <*ratul@cs.washington.edu>*